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Abstract
In this paper, we demonstrate that the inevitable action of the environment can be substantially
weakened when considering appropriate nonstationary quantum systems. Beyond protecting
quantum states against decoherence, an oscillating frequency can be engineered to make the
system–reservoir coupling almost negligible. Differently from the program for engineering
reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our
technique does not require previous knowledge of the state to be protected. However,
differently from the previously-reported schemes for dynamical decoupling, our technique
does not rely on the availability of tailored external pulses acting faster than the shortest
timescale accessible to the reservoir degree of freedom.

1. Introduction

A great deal of attention has recently been devoted to quantum
information theory owing to its strategic position, joining up
several areas of theoretical and experimental physics. As
eventually all domains of low-energy physics may provide
potential platforms for the implementation of quantum logic
operations, efforts have been concentrated on overcoming
some sensitive problems that constitute a spectacular barrier
against their realizations. These problem areas touch on
both fundamental physics phenomena—such as decoherence
and nonlocality—and outstanding technological issues such as
individual addressing of quantum systems, separated by only
a few micrometers, with insignificant error [1].

As the debate around nonlocality seems to be subsiding
through a set of experimental results—such as (i) technological
evidence against the so-called loopholes [2], (ii) the
demonstrated violation of Bell’s inequality with two-photon
fringe visibilities in excess of 97% [3] and (iii) highly
successful experimental quantum teleportation [4]—the
program for quantum state protection is still at an early
stage, despite all the achievements. A promising suggestion
on this subject refers to the possibility of manipulating the
system–reservoir coupling through an additional interaction
between the system and a classical ancilla. This control
of decoherence through engineered reservoirs has been

theoretically implemented for atomic two-level systems,
exploiting a structured reservoir [5] or mimicking a squeezed-
bath interaction [6]. In the domain of trapped ions, beyond a
theoretical proposition [7], engineered reservoirs have also
been experimentally implemented for superposed motional
states of a single-trapped atom [8]. Another strategy,
also experimentally investigated [9], involves collective
decoherence, where a composite system interacting with a
common reservoir [10] exhibits a decoherence-free subspace
(DFS). Whereas a common reservoir is crucial for shielding
quantum coherence in a DFS, the quantum-error correction
codes QECC [11] work, instead, on the assumption that
the decoherence process acts independently on each of the
quantum systems encoding a qubit. The issue of the physical
grounds for the assumptions behind a common or distinct
reservoir is in detail in [12].

We also mention a recent proposal for the control of
coherence of a two-level quantum system [13], based on
random dynamical decoupling methods [14]. These methods
resemble a previous technique to suppress decoherence that
used a tailored external driving force acting as pulses [15]
which, as in the present paper, was applied to a cavity-mode
superposition state. In [16], in a more general scope, the
authors formulated a model for decoupling a generic open
quantum system from the environmental influence also bailing
out on tailored external pulses to induce motions into the
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Figure 1. Sketch of the spectral distribution of the reservoir σ(µ), the extrema ω0 ± χ of the time-dependent frequency of the system, apart
from a particular instantaneous frequency ω(t) around which we have drawn the Lorentzian shape of the system–reservoir coupling with
sharpness ξ .

system which are faster than the shortest timescale accessible
to the reservoir degree of freedom.

In the present work we achieve the goal of [13–16],
which goes beyond the quest for quantum state protection
through an engineered reservoir, from a different approach:
we demonstrate, arguing from quite general and current
assumptions, that a nonstationary resonator could almost be
completely decoupled from the environment, rendering the
damping factor that characterizes the environment negligible.
Differently from the dynamical decoupling methods presented
in the literature [13–17], where one must interfere in the
system in timescales less than the bath correlation time, our
technique takes advantage of the preexisting natural frequency
of the system, adding to it a small amplitude to achieve such
timescales. Note that, differently from our proposal as well as
those in [13–16], the schemes of engineered reservoirs require
previous knowledge of the state to be protected. Evidently,
this requirement forbids the use of engineered reservoirs for
the implementation of logic operations, making the schemes of
switching off the system–reservoir interaction more attractive.
We observe that the control of decoherence through the
frequency modulation of the system–heat-bath coupling has
been proposed earlier [18], but as in [13, 14], such control
is achieved for a two-level system instead of a cavity mode.
Again relying on the assumption of an arbitrarily fast control
of the Hamiltonian, the topics of optimal [19] and stochastic
[20] control of decoherence count on appropriate tailoring
of external laser pulses in the former case and of stochastic
modulation of a system parameter in the latter case. We finally
mention the multilevel encoding of logical states [21], which
makes quantum gates immune to mixing and decoherence
effects occurring within encoding subspaces.

2. Our model

Assuming a nonstationary mode coupled to the environment,
we get the Hamiltonian

H(t) = ω(t)a†a +
∑

k

ωkb
†
kbk +

∑
k

λk(t)
(
ab

†
k + a†bk

)
, (1)

with a†(a) and b
†
k(b) standing for the creation (annihilation)

operators of the nonstationary field ω(t) and the kth bath
mode ωk , respectively. Assuming the time-dependent (TD)
relation ω(t) = ω0−χ sin(ζ t), the system–reservoir couplings
also turn out to be TD functions λk(t). The simple TD

form of the free Hamiltonian H0 = ω(t)a†a +
∑

k ωkb
†
kbk

enables us to describe, through the transformation U(t) =
exp

(−i
∫ t

0 H0(τ ) dτ
)
, the Hamiltonian in the interaction

picture

V (t) = a�†(t) + a†�(t), (2)

where we have defined the TD operator �(t) = ∑
k λk(t)bk

exp[i	k(t)] and parameter 	k(t) = 
(t) − ωkt , with

(t) = ∫ t

0 ω(τ) dτ . For the case of the weak system–
reservoir coupling the evolution of the density matrix of the
nonstationary field, in the interaction picture and to the second
order of perturbation, is given by

dρ(t)

dt
= −

∫ t

0
dt ′ TrR[V (t), [V (t ′), ρR(0) ⊗ ρ(t)]], (3)

where we have employed the usual approximation ρR(0) ⊗
ρ(t). Assuming that the reservoir frequencies are very closely
spaced, with spectral density σ(µ), to allow the continuum
summation of the coupling strength of the resonator to the
reservoir, such that

∑
k → (2π)−1

∫ ∞
0 dµσ(µ), we have to

solve integrals appearing in equation (3), related to correlation
functions of the form∫ t

0
dt ′〈�†(t)�(t ′)〉 = e−i χ

ζ
cos(ζ t)

∫ t

0
dt ′ ei χ

ζ
cos(ζ t ′)

×
∫ ∞

0

dµ

2π
e−i(µ−ω0)(t−t ′)σ (µ)N(µ)λ(µ, t)λ(µ, t ′), (4)

where the thermal average excitation of the reservoir N(µ) is
defined by 〈b†(µ)b(µ′)〉 = N(µ)δ(µ−µ′), while the system–
reservoir coupling is modelled as

λ(µ, t) = λ0
ξ 2

(ω(t) − µ)2 + ξ 2
, (5)

with the parameter ξ accounting for the spectral sharpness
around the TD frequency of the nonstationary mode. It is quite
reasonable, for the case of the weak system–reservoir coupling
considered here, to assume a Lorentzian shape for the function
λ(µ, t), centred around the frequency ω(t). Moreover, as
expected, an estimate of the time average of the operator
�(t) reveals that the TD system–reservoir coupling falls with
λ0/|µ − ω0|, so that the larger the detuning, the smaller the
coupling. In figure 1 we present a sketch illustrating the
spectral distribution of the reservoir, assumed to be of the
usual and realistic Markovian white-noise type, the extrema
ω0 ± χ of the time-dependent frequency of the system, apart
from a particular instantaneous frequency ω(t) around which
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we have drawn the Lorentzian shape of the (weak) system–
reservoir coupling λ(µ, t), with sharpness ξ .

Performing the variable transformations τ = ζ(t − t ′) and
ν = (ω0 − µ)/χ − sin(ζ t) in equation (4) and assuming, as
usual, that σ and N are functions that vary slowly around the
frequency ω0, we obtain∫ t

0
dt ′〈�†(t)�(t ′)〉 = �κ4χN(ω0)

∫ ζ t

0
dτ e−iεF (τ)

×
∫ a

−∞

dν

2π

eiνετ

(ν2 + κ2)[(ν + G(τ))2 + κ2]
, (6)

where, apart from the functions F(τ) = cos(ζ t − τ) +
cos(ζ t) − τ sin(ζ t),G(τ) = sin(ζ t) − sin(ζ t − τ) and a =
ω0/χ −sin(ζ t), we have defined the dimensionless parameters
� = �0/ζ, κ = ξ/χ and ε = χ/ζ , where �0 = σ(ω0)λ

2
0 is

the well-known damping rate of a stationary mode. Under the
assumption that χ/ω0 � 1, the upper limit a can be extended
to infinity and the corresponding integral can be evaluated
analytically, leading to the correlation function∫ t

0
dt ′〈�†(t)�(t ′)〉 = 2N(ω0)�κ4χ

×
∫ ζ t

0
dτ

eiε[F(τ)+ 1
2 τG(τ)]

G3(τ )(1 + �2)
e−εκτ

×
{
G(τ) cos

(
ετG(τ)

2

)
+ 2κ sin

(
ετG(τ)

2

)}
= N(ω0)γ (t). (7)

where � = 2κ/G(τ) and γ (t) is related to an effective
time-dependent damping rate. We remember that the above
correlation function is the only one among sixteen others.
Those of the forms 〈�†(t)�(t ′)〉 and 〈�(t)�†(t ′)〉 give results
proportional to N(ω0) and N(ω0)+1, respectively, while those
of the forms 〈�†(t)�†(t ′)〉 and 〈�(t)�(t ′)〉 are null. For the
sake of completeness, before analysing the influence of the
parameters �, κ and ε on the damping rate of a nonstationary
mode, we compute its reduced density operator, obtaining the
master equation

dρ(t)

dt
= [N(ω0) + 1]{2 Re[γ (t)]aρ(t)a†

− γ ∗(t)ρ(t)a†a − γ (t)a†aρ(t)}
+ N(ω0){2 Re[γ (t)]a†ρ(t)a − γ (t)ρ(t)aa†

− γ ∗(t)aa†ρ(t)}. (8)

Assuming a reservoir at absolute zero, where N(ω0) = 0, we
obtain the simplified form

dρ(t)

dt
= [γ (t) + γ ∗(t)]aρ(t)a† − γ ∗(t)ρ(t)a†a

− γ (t)a†aρ(t), (9)

whose c-number version, for the normal ordered characteristic
function χ(η, η∗, t) = Tr[ρ(t) exp(ηa†) exp(−η∗a)], is given
by

∂χ(η, η∗, t)
∂t

= −γ ∗(t)η
∂χ(η, η∗, t)

∂η

− γ (t)η∗ ∂χ(η, η∗, t)
∂η∗ . (10)

Assuming a solution of the form χ(η, η∗, t) = χ(η(t),

η∗(t)), we obtain η(t) = η0 e−�(t)/2, where η0 ≡ η(t = 0) and
�(t) = ∫ t

0 γ (τ) dτ is the effective damping rate. Assuming, in
addition, that χ(η, η∗, t) = χ(η, η∗, t = 0)|η→η(t), we obtain
from the Glauber–Sudarshan P-representation and the initial
superposition state |�(t = 0)〉 = ∑

� c�|α0�〉, the reduced
density operator of the nonstationary mode

ρ(t) = N 2
∑
��′

C��′(t)|α�(t)〉〈α�′(t)|, (11)

where α�(t) = α0� e−γ (t) and

C��′(t) = exp
{ [− 1

2 (|α0�|2 + |α0�′ |2) + α∗
0�′α0�

]
× [1 − e−2 Re[�(t)]]

}
c∗
�′c�. (12)

We note that, as expected, the decay rate turns out to
be a real function even when �(t) is complex. For the
particular case where the nonstationary mode is prepared in the
superposition state |�(0)〉 = N (|α0〉 + |−α0〉), the function
multiplying the nondiagonal elements of the density matrix
reads

C12(t) = exp[−2|α0|2(1 − e−2 Re[�(t)])]. (13)

2.1. The mechanism behind the attenuation of the
system–reservoir coupling

We now analyse the influence of the parameters �, κ and ε on
the effective damping rate �(t) which, in its turn, determines
the decoherence time of the superposition |�(0)〉, as given
by equations (12) and (13). Starting with the parameter
� = �0/ζ , a measure of the rate of variation of the frequency
ζ , compared to the damping constant �0, it is evident from
equation (7), as expected, that the damping function �(t)

decreases in proportion to �. Otherwise, in the adiabatic
regime where ζ approaches �0 we also expect �(t) to be
close to the damping constant �0. Regarding parameter
κ = ξ/χ , which accounts for the range of oscillation of
ω(t) compared to the Lorentzian sharpness ξ , we expect the
damping function to decrease as the range of oscillation χ

increases, as long as the variation rate ζ is adjusted to be
significantly higher than �0. When both parameters κ and � are
adjusted accordingly, to be significantly smaller than unity, the
system–reservoir coupling is weakened as well as the damping
function �(t), consequently increasing the decoherence times
of superposition states. Differently from �, our expectation
concerning κ is blurred in equation (7): just as is confirmed
by the factor κ4, it is refuted by the decay function e−εκτ in the
integral. Finally, the parameter ε = χ/ζ may also be defined
as ε = �/κ , as long as the damping rate �0 approximates the
sharpness ξ , weighing the contribution of parameters � and κ .
For the same reason as κ , the role played by ε in the behaviour
of �(t) is also blurred in equation (7).

We stress that the above mathematical analysis could
be expected from physical considerations. In fact, although
we have assumed a sudden system–reservoir coupling, the
characteristic time interval for an appreciable action of the
reservoir over a stationary system is around �−1

0 . However,
when the frequency of the system changes continuously, its
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Figure 2. Plot of the function C12(t) against the scaled time �0t for
the initial state |�(0)〉 = N (|α0〉 + |−α0〉) with α0 = 1. The thick
solid line corresponds to the case of a stationary mode where
ω(t) = ω0; the solid and dashed lines correspond to � = 1/2 and
1/10, for fixed κ = 1/2; finally, the dashed-dotted and dotted lines
correspond to � = 1/2 and 1/10, for fixed κ = 1/10.

rate of variation (proportional to ζ ) plays a crucial role in
the effective coupling between the system and the reservoir.
Remembering that this coupling occurs around ω(t), in a
region defined by the Lorentzian sharpness ξ , a significant
rate of variation, with ζ larger than �0, makes difficult an
effective action of the reservoir over the system since their
interaction time is reduced proportionally to �. Otherwise,
when ζ is smaller than �0, an effective action of the reservoir
takes place, inducing the relaxation of the system before a
significant change of its frequency. In its turn, the role of
the amplitude of the oscillation χ is to trigger the action of
the rate of variation ζ . In fact, when the amplitude χ is
smaller than the Lorentzian sharpness ξ , the nonstationary
system does not leave the region (in frequency space) of
its effective coupling with the reservoir, thus decaying as a
stationary system, whatever the value of ζ . However, when χ

is larger than ξ , the effective system–reservoir coupling moves
to a different region of the spectrum, triggering the action of
the rate of variation ζ as described above.

To clarify even better the role of the parameters � and
κ in the damping rate, in figure 2 we plot the function
C12(t) against the scaled time �0t , considering the initial
superposition |�(0)〉 = N (|α0〉 + |−α0〉) with α0 = 1.
The thick solid line corresponds to the case of a stationary
mode where ω(t) = ω0, prompting the expected result
�(t) = �0t/2. Setting κ = 1/2, the solid and dashed lines
correspond to � = 1/2 and 1/10, respectively. As expected,
the damping function decreases as the rate of variation of
the frequency increases. In fact, a higher rate of variation
works to hinder the system–reservoir coupling, lengthening
the response time of the system. With κ = 1/10, the dashed-
dotted and dotted lines correspond to � = 1/2 and 1/10,
showing that the amplitude of oscillation χ is more effective in
diminishing the damping rate than the rate of variation ζ . This
unexpected result reveals interesting aspects of the physics of
nonstationary cavity modes: first, as demonstrated below, (i)
the time-dependence of ω(t)—the values of the frequencies

χ and ζ—required to practically switch off the system–
reservoir coupling can be engineered through atom–field
interaction; furthermore, (ii) in the adiabatic regime, where
ζ/ω0, χ/ω0 � 1, the atom–field interaction is still modelled
by the Jaynes–Cummings interaction despite the nonstationary
mode [22]. Consequently, all the protocols developed
for the implementation of processes in stationary modes—
for example, quantum state or Hamiltonian engineering
and logical devices—become directly applicable to the
nonstationary mode considered here.

Figures 3(a)–(e) display the damping process in the
evolution of the amplitude of the coherent state α(t) =
α0 exp[−i
(t) − �(t)] composing the superposition |�(t)〉.
All these figures refer to the same time interval as that used
in figure 2, thus leading to the same number of cycles coming
from the rotation in phase space, due to the factor e−i
(t). In
all figures the ratio ω0/�0 = 10 is set to a fictitious scale to
make clear the spiralling of α(t). In figure 3(a), related to the
thick solid line of figure 2, we observe the loss of excitation
carrying the initial coherent state to the vacuum state. In this
figure we also plot, in a thick dotted line, the evolution of the
amplitude −α(t) of the other component of the superposition
state. Figures 3(b)–(e) correspond respectively to the solid,
dashed, dashed-dotted and dotted lines of figure 2, showing a
gradual suppression of the loss of excitation which, differently
from figure 3(a), does not occur at a uniform rate, due to
the oscillatory character—coming from equation (7)—of their
corresponding curves in figure 2. Figure 3(d) clearly reveals
this nonuniform character of the excitation loss through the
distinct gaps between the cycles described by the amplitude
α(t) on its (obstructed) way to the vacuum.

To stress that the mechanism of suppression of
decoherence—illustrated in figures 2 and 3 for the particular
superposition |�(0)〉 = N (|α0〉 + |−α0〉)—applies for any
state; in figure 4 we plot the real part of the effective
damping rate Re[�(t)] against �0t . In fact, back to the master
equation (9), we observe that as γ (t) decreases, the effective
damping rate �(t) also decreases, weakening both the
relaxation and decoherence processes. In the extreme case
where γ (t) becomes null, we create the conditions for a
free evolution. As in figure 2, the thick solid line corresponds
to the case of a stationary mode, resulting that �(t) = �0t/2.
Confirming that the damping function decreases as the rate of
variation ζ increases, the solid and dashed lines correspond to
� = 1/2 and 1/10, with fixed κ = 1/2. Finally, showing that
the damping function decreases as the amplitude of oscillation
χ increases, the dashed-dotted and dotted lines correspond to
� = 1/2 and 1/10, with fixed κ = 1/10. Therefore, there is a
complete correspondence between the decoherence process
of the particular state |�(0)〉 = N (|α0〉 + |−α0〉) and the
general behaviour of the effective damping rate �(t), showing
that our mechanism to suppress decoherence applies for any
state.

Next, considering some sensitive features in the present
scheme to control decoherence, we first address the time-
dependent system–reservoir coupling λk(t), which can be
justified through the treatment of two coupled harmonic
oscillators, one of them with time-dependent frequency. We
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Figure 3. Plot of Im(α(t)) against Re(α(t)) to illustrate the damping process in the evolution of the amplitude of the coherent state
α(t) = α0 exp [−i
(t) − �(t)] composing the superposition |�(t)〉, with α0 = 1. The patterns of the lines in figures 3(a)–(e) correspond to
those in figure 2, with the associated values of parameters κ and �.

start with the usual coupling CX1X2, where X1(t) = C1(t)
(
a1+

a
†
1

)
and X2 = C2

(
a2 + a

†
2

)
. Within the interaction picture

and the rotating-wave approximation, we end up with a time-
dependent interaction of the form C(t)

(
a
†
1a2 + a1a

†
2

)
, similar

to what had been considered in [13, 23–25]. Moreover, as we
are assuming a sudden coupling between the system and the
reservoir at each time instant, we believe that this coupling
‘follows’ the modulation of the cavity mode frequency. Our
belief is also based on the fact the system–bath coupling in
quantum optics systems (as in cavity QED) is sufficiently
small, so that we can model it by a Lorentzian function in
a good approximation. Considering again two interacting
harmonic oscillators [12], now with stationary frequencies

ω1 and ω2 and coupling strength λ—ω1 playing the role
of the system and ω2 of one of the bath modes—it can
be demonstrated that their effective coupling is given by
λ2/

√
λ2 + δ2, with δ = |ω1−ω2|, justifying a sharp Lorentzian

function in the case of weak coupling, where λ � δ. However,
for the case of strong coupling, where λ � δ (assuming, as
usual, a cutoff frequency for the reservoir) we obtain, instead,
a constant effective coupling λ.

3. Engineering the nonstationary mode

The most sensitive point, however, is the engineering of the
nonstationary mode whose state is to be protected. There is
a great deal of the literature exploring nonstationary modes,

5



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 085504 L C Céleri et al
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Figure 4. Plot of the real part of the effective damping rate Re[�(t)]
against �0t , illustrating that the mechanism of suppression of
decoherence applies for any initial state. As in figure 3, the patterns
of the lines correspond to those in figure 2, with the associated
values of parameters κ and �.

especially in respect of Casimir effect [26]. We present
below a scheme to engineer a nonstationary mode ω(t) =
ω0 + χ sin(ζ t) from the interaction of a driven two-level atom
(frequency ωa) with a stationary cavity mode (frequency ωc)
given by

H = ωca
†a +

ωa

2
σz + F(t)(σ+ e−iωLt + σ− eiωLt )

+ G(aσ+ + a†σ−), (14)

where ωL stands for the frequency of the classical driving field
and G denotes the Rabi frequency. The atomic operators are
given by σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g| and σ− = |g〉〈e|, e
and g being the excited and the ground states. We assume the
atomic amplification modulated as F(t) = F0 cos(ζ t/2 + φ).
In the interaction picture, the transformed Hamiltonian is given
by

HI = G(aσ+ eiδ1t + a†σ− e−iδ1t ) + F(t)(σ+ eiδ2t + σ− e−iδ2t ),

(15)

where δ1 = ωa − ωc and δ2 = ωa − ωL are the atom–field and
the atom–laser detunings. Next, we define H1 = G(aσ+ eiδ1t +
a†σ− e−iδ1t ) and H2 = F(t)(σ+ eiδ2t + σ− e−iδ2t ), and assume
the highly off-resonance laser amplification process, such that
|δ2| � F0, ζ,G, |δ1| with G � |δ1|. Under this assumption,
the strongly oscillating terms of H2 lead, to a good
approximation, to the effective Hamiltonian [27],

Heff = H1 − iH2(t)

∫
H2(τ ) dτ

= ωca
†a + 
(t)σz + g(aσ+ + a†σ−), (16)

where 
(t) = ωa/2 + F 2(t)/δ1. The diagonalization of
Hamiltonian Heff is easily accomplished through the dressed
atomic basis {|g, n〉,|e, n − 1〉} [28]. Under the usual
assumption that G2n � δ2

1 , we obtain the dispersive atom–
field interaction:

H = ωca
†a + 
(t)σz + ϒ(t)a†aσz, (17)

where the adjustment φ = π/4 makes ϒ(t) = ϒ1 +
ϒ2 sin(ζ t) with ϒ1 = [

1 − 3F 2
0

/
2δ1δ2

]
G2/δ1 and ϒ2 =

(G2/δ1)
(
F 2

0

/
2δ1δ2

)
. Evidently, by turning off the laser we

obtain the usual Stark shift ϒa†aσz with ϒ = G2/δ1. In
a frame rotating with the shifted atomic frequency 
(t),
obtained through the unitary operator U = exp[−i
̃(t)σz]
with 
̃(t) = ∫


(t ′) dt ′, the state vector associated with the
transformed Hamiltonian H̃ = ωca

†a + ϒ(t)a†aσz is given by

|�(t)〉 = ei
̃(t)|g〉|�g(t)〉 + e−i
̃(t)|e〉|�e(t)〉, (18)

where, in the Fock basis: |��(t)〉 = ∑
n〈�, n|�(t)〉|n〉, � =

g, e. Using the orthogonality of the atomic states and
equations (17) and (18), we obtain the uncoupled TD
Schrödinger equations

i
d

dt
|��(t)〉 = H̃�|��(t)〉, (19)

H̃� = ω�(t)a
†a, (20)

where ωg = ωc − ϒ(t) and ωe = ωc + ϒ(t). Therefore, when
preparing the atom in the fundamental state, we obtain the TD
frequency ω(t) = ω0 − χ sin(ζ t) where, from interaction
(17), ω0 = ωc + ϒ1 and χ = ϒ2. Note that the atom
crosses the cavity remaining in its ground state (due to its
off-resonance interactions with both the cavity mode and
the classical field), so that there is no injection of noise
coming from the atomic decay to the engineered nonstationary
cavity mode. Assuming typical values for the parameters
involved in cavity QED experiments [29, 30]: G ∼ 3 ×
105 s−1, |δ1| ∼ 106 s−1, |δ2| ∼ 107 s−1 and �0 ∼ 103 s−1,
it follows, with the intensity F0 ∼ 10 × G, that χ ∼ 4 ×
104 s−1 with ζ � 106 s−1. Since it is reasonable to assume
ξ ∼ �0, the value 1/10 for the parameters κ and � employed
to obtain the dotted line of figure 2, is easily accomplished.

Evidently, to circumvent the difficulties introduced by
the small time interval of atom–field interaction, it would
be interesting to engineer the nonstationary mode through a
sequential interaction of atoms, one by one, with the cavity
mode. The trapping of an atom inside the cavity, along the
lines suggested in [31], is also a possibility to be analysed.
Otherwise, nonstationary modes can also be achieved by other
schemes as the mechanical motion of the cavity walls [32],
suitable for our purpose since the frequency attainable is in the
gigahertz range, or even more sophisticated schemes where
the effective motion of the walls is generated by the excitation
of a plasma in a semiconductor [33].

4. Concluding remarks

We have thus presented in this paper a scheme which
practically switches off the reservoir of a cavity field by
engineering a suitable nonstationary mode ω(t). As pointed
out, instead of interfering in the system in timescales less
than the bath correlation time, as in the dynamical decoupling
schemes presented previously, in our technique we exploit the
preexisting natural frequency of the system ω0, adding to it a
small amplitude χ (apart from the rate of variation ζ ) to meet
the timescales of the bath correlation time, around ω0 + χ .
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We reach the same goal of the dynamic decoupling schemes
without directly interfering in the system within such a small
timescale. Instead, our procedure relies on the manipulation
of frequencies (χ and ζ ) whose timescales are considerable
larger than the bath correlation time. Besides analysing
the physical parameters required to accomplish this process,
we also demonstrated how to engineer such a nonstationary
mode through its dispersive interaction with a driven atomic
system. Evidently, the scheme presented here for a time-
dependent cavity mode applies directly to any oscillatory
system such as trapped ions, nanomechanical oscillators, and
superconducting transmission lines; it can also be extended
to any nonstationary quantum system. We believe that both
techniques presented here, to protect quantum states through
nonstationary quantum systems and to engineer such systems,
can play an essential role in quantum information theory.

Beyond the information theory, we believe that the present
work can directly contribute to the field of cavity quantum
electrodynamics, specifically in the less-explored topic of
the interaction of a two-level atom with a nonstationary
mode in the adiabatic regime. In fact, as the engineering
of a nonstationary mode is relatively easy to accomplish in
the adiabatic regime—through the mechanical motion of the
cavity walls [32] or atom–field interaction, as demonstrated
in this work—typical quantum-optical phenomena may be
investigated in this particular context.
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