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Abstract

By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse
the optimum topologies which are able to store quantum superposition states, protecting them
from decoherence, for the longest period of time. The storage is made dynamically, in that the
states to be protected evolve through the network before being retrieved back in the oscillator
where they were prepared. The decoherence time during the dynamic storage process is
computed and we demonstrate that it is proportional to the number of oscillators in the
network for a particular regime of parameters.

1. Introduction

In recent years the focus on subjects such as quantum state
transfer [1–4], entanglement distribution [5] and decoherence
[6–8] in quantum networks has indicated an irreversible
trend in information theory towards many-body physics.
This is corroborated by the recently revealed scaling of
entanglement due to the many-body effects of phase transitions
[9], superradiance [10] and superconductivity [11]. In fact,
the path of information theory towards many-body physics
is naturally imposed by the prospect of achieving scalable
quantum processors [12].

In the specific subject of state transfer in quantum
networks, a great deal of work has been conducted in
many different systems. The coherent transport of atomic
wave packets [1] and the evolution of macroscopically
entangled states [2] have been analysed within optical lattices.
The perfect transfer of arbitrary states has been proposed
theoretically in quantum spin networks [3]. In the quantum
optics domain, coherent quantum state transfer between matter
and light, enabling the implementation of distributed quantum
networking, has also been reported [13]. In networks of
coupled quantum harmonic oscillators (HOs), on which we
focus in the present work, the dynamics and manipulation of
entanglement was analysed in [4, 7, 14]. We note that all
the results mentioned above refer to ideal networks, where
dissipative effects are absent, and thus the noise injection
which introduces decoherence.

The need to store a quantum superposition against
decoherence is necessarily a central issue within state transfer
and protection in a realistic dissipative quantum network.
Apart from the quest for computing the dynamical fidelity
of a quantum superposition as it evolves through a dissipative
quantum network, the search for a quantum storing device is of
particular relevance for quantum information processing and
future quantum communication networks [15]. In the present
paper, we focus on the storage of quantum states against
decoherence through their evolution in appropriate topologies
of a network of dissipative HOs.

2. Network of dissipative harmonic oscillators

A given topology of a network composed by N HOs is defined
by the way the oscillators are coupled together, the set of
coupling strengths {λmn} and their natural frequencies {ωm}.
Here we assume the general scenario where each oscillator
is coupled to its own reservoir, instead of the particular and
rather unusual situation where the whole network is coupled to
a common reservoir [8]. We start from a symmetric network,
sketched in figure 1, where each oscillator is coupled to each
other, apart from interacting with its own reservoir. Setting
from here on that the indices m,m′, n and n′ run from 1 to N,
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Figure 1. Sketch of a dissipative symmetric network.

the Hamiltonian H = HS + HR + HI modelling this network
accounts for the N coupled oscillators,

HS = h̄
∑
m

⎡⎣ωma†
mam +

1

2

∑
n(�=m)

λmn

(
a†

man + ama†
n

)⎤⎦ , (1)

the N distinct reservoirs

HR = h̄
∑
m

∑
k

ωmkb
†
mkbmk, (2)

each one composed by an infinite set {k} of modes, and the
coupling between the HOs and their respective reservoirs,

HI = h̄
∑
m

∑
k

Vmk

(
b
†
mkam + bmka

†
m

)
. (3)

In the above Hamiltonians, a
†
m (am) is the creation

(annihilation) operator associated with the mth network
oscillator ωm which is coupled to the nth oscillator with
strength λmn and to the mth reservoir with strength Vmk .
The kth reservoir mode ωmk is described by the creation
(annihilation) operator b

†
mk (bmk).

3. The master equation

To derive the master equation from Hamiltonian H, as
done in [16], we first rewrite HS in a matrix form HS =
h̄

∑
m,n a

†
mHmnan, with the elements given by

Hmn = ωmδmn + λmn(1 − δmn). (4)

The diagonalization of matrix H is thus performed through the
transformation Am = ∑

n Cmnan, where the coefficients of the
mth line of matrix C define the eigenvectors associated with
the eigenvalues �m of H. With C being an orthogonal matrix,
CT = C−1, the commutation relations

[
Am,A

†
n

] = δmn and
[Am,An] = 0 follow, enabling the Hamiltonian H to be
rewritten as H = H0 + V , where

H0 = h̄
∑
m

(
�mA†

mAm +
∑

k

ωmkb
†
mkbmk

)
(5a)

V = h̄
∑
m,n

∑
k

CnmVmk

(
b
†
mkAn + bmkA

†
n

)
. (5b)

With the diagonalized Hamiltonian H0 we are ready
to introduce the interaction picture, defined by the
transformation U(t) = exp(−iH0t/h̄), in which VI (t) =
h̄
∑

m,n

[
Omn(t)A

†
n + O†

mn(t)An

]
, and the bath operator

Omn(t) = Cnm

∑
kVmk exp[−i(ωmk − �n)t]bmk . Assuming

the interactions between the resonators and the reservoirs to
be weak enough, we perform a second-order perturbation
approximation followed by tracing out the reservoir degrees
of freedom. We also assume a Markovian reservoir such that
the density operator of the global system can be factorized
as ρ1...N (t) ⊗ ρR(0). Defining the effective damping matrix
whose elements are

�mn = N
∑
n′

Cn′mγm(�n′)Cn′n, (6)

where γm(�n′) is the damping rate of the mth oscillator around
the normal modes �n′ , the master equation for a reservoir at
0 K simplifies to the generalized Lindblad form

d

dt
ρS(t) = i

h̄
[ρS(t),H0] +

∑
m,n

LmnρS(t), (7)

where

LmnρS(t) =
∑
m,n

�mn

2

([
anρS(t), a

†
m

]
+

[
am, ρS(t)a

†
n

])
(8)

are the Liouville operators accounting for the direct (m = n)

and indirect (m �= n) dissipative channels. Through the direct
channels the oscillators lose excitation to their own reservoirs,
whereas through the indirect channels they lose excitation to
all the other reservoirs but not to their own. We observe that for
Markovian white noise reservoirs, γm(�n) = γm, equation (6)
reduces to �mn = Nγmδmn, and the indirect channels become
null.

4. The Glauber–Sudarshan P-function

The evolution equation for the Glauber–Sudarshan P-function,
derived from the master equation (7), is given by

d

dt
P ({ηm}, t)

=
∑
m

(
�mm

2
+

∑
n

HD
mnηn

∂

∂ηm

+ c.c.

)
P({ηm}, t), (9)

where, generalizing matrix H (4), we have defined its
dissipative counterpart HD , with the elements

HD
mn = iHmn + �mn/2. (10)

The solution to equation (9) factorizes as [16]

P({ηm}, t) = exp

(∑
m

�mmt

)
[P({ηm}, t = 0)|{ηm}→{ηm(t)},

where ηm(t) = ∑
m′,n Dmn exp(�nt)D

−1
nm′ηm′ and the elements

of the mth column of matrix D define the mth eigenvector
associated with the eigenvalue �m of matrix HD . Having the
P-function at time t = 0, we immediately obtain it at any other
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time by substituting the initial set {ηn} with the evolved one
{ηn(t)}.

After introducing the matrix HD we are in the position to
build up whichever the topology of the network. The general
symmetric dissipative topology HD

sym, from which all other are
derived, is sketched in figure 1. From equations (6) and (10),
we verify that the matrix HD

sym describing such a topology is
given by

HD
sym = 1

2

⎛⎜⎜⎜⎝
�11 �12 · · · �1N

�21 �22 · · · �2N

...
...

. . .
...

�N1 �N2 · · · �NN

⎞⎟⎟⎟⎠

+ i

⎛⎜⎜⎜⎝
ω1 λ12 · · · λ1N

λ12 ω2 · · · λ2N

...
...

. . .
...

λ1N λ2N · · · ωN

⎞⎟⎟⎟⎠ , (11)

where the first matrix describes the nondissipative network,
and the second accounts for the dissipation.

5. The density operator and decoherence time

Let us consider that the initial pure state of the network
is given by a general superposition whose density operator
reads ρ(0) = N 2∑

r,scrc
∗
s

∣∣{βr
m

}〉〈{
βs

m

}∣∣, where N is the
normalization factor and cr is the probability amplitudes of
the direct product of coherent states

∣∣{βr
m

}〉 = ⊗
m

∣∣βr
m

〉
. After

some algebra we verify that ρ(0) evolves to the reduced
network density operator

ρS(t) = N 2
∑
r,s

crc
∗
s

〈{
βs

m

}∣∣{βr
m

}〉〈{
ζ s
m(t)

}∣∣{ζ r
m(t)

}〉 ∣∣{ζ r
m(t)

}〉〈{
ζ s
m(t)

}∣∣,
(12)

where the excitation of the mth oscillator is given by
ζ r
m(t) = ∑

n�mn(t)β
r
n, with the time-dependent matrix

elements �mn(t) = ∑
m′ Dmm′ exp(−�m′ t)D−1

m′n.
From the general form given in ρ(0), we choose the

particular initial state of the network |�(0)〉 = N (|α〉 +
|−α〉)1 ⊗ |{ξ�}〉, where a superposition of coherent states
prepared in oscillator 1 factorizes from a product of coherent
(or vacuum) states ξ prepared in the remaining oscillators,
with � running from 2 to N from here on. Evidently, the
state prepared in HO 1 is the one to be protected through its
evolution across an appropriate topology of the network. For
the state of interest |�(0)〉, expression (12) simplifies to

ρS(t) = N 2
∑
r,s

crc
∗
s exp{−[2|α|2F(t) − iGr (t)](1 − δrs)}

×∣∣{ζ r
m(t)

}〉〈{
ζ s
m(t)

}∣∣, (13)

where F(t) = 1 − ∑
m|�m1(t)|2 and Gr (t) = 2

∑
m,n

Im
[
ξ ∗βr

1�m1(t)�
∗
mn(t)

]
. Regarding the decoherence time

of the superposition N (|α〉 + |−α〉)1, it can be immediately
estimated from the exponential decay exp[−2|α|2F(t)] of the
off-diagonal terms of the density operator (13) as

τ−1
D = lim

t→0
[2|α|2F(t)/t]. (14)

We note that for an isolated dissipative HO, the decoherence
time of the superposition N (|α〉 + |−α〉)1, following from
F(t) = 1 − e−γ t , equals to (2|α|2γ )−1.

6. The memory device

On building up the memory device for the superposition
N (|α〉 + |−α〉)1 prepared in the HO 1, we assume that the
decay rate of this oscillator is γ , with all the other decay rates
being γ̃ � γ . In current cavity QED technology, we can
assign the value γ ≈ 103 s−1 for a high-Q open cavity [17],
playing the role of the HO 1, where the state can be prepared
and subsequently read out through atom–field interactions. In
this context, highest-Q closed cavities, all with γ̃ ≈ 1 s−1 [18],
play the role of the remaining storage HOs. We thus consider
the open cavity to manipulate the field state through atom–field
interaction, while the closed cavities are only assigned for the
storing process. Before analysing numerically large networks,
we first address the cases N = 2, 3 and 4 under the regime
of parameters {γm′ } � {λmn} � {ωn′ } and Markovian white
noise reservoirs, which allows for analytical results.

(i) The case N = 2. Even such a minimal network defining
a trivial topology operates as a memory device. In fact, the
obtained F (N=2)(t) = 1 − e−(γ +γ̃ )t/2 prompts the decoherence
time

τ
(N=2)
D = 1

2|α|2
2

γ + γ̃

 2

1

2|α|2γ , (15)

which is about twice the value assigned for a dissipative HO 1
uncoupled from the network [7].

(ii) The case N = 3. From a symmetric network with
N = 3, we obtain, up to terms of the orders O(γ /{λmn})
and O(γ̃ /{λmn}), the function

F (N=3)(t) ≈
[(

1 +

(
λ2

12 + λ2
13 − 2λ2

23

)2
�2

18(�6 − �6)

)
γ − γ̃

3
+ γ̃

]
t,

(16)

where �2 = (
λ2

12 + λ2
13 + λ2

23

)/
3 and �3 = λ12λ13λ23. In

this case, as in any other where N � 3, the appropriate
topologies for optimal memory devices follows automatically
from the maximization of the decoherence time (minimization
of F(t)). Such a maximization procedure imposes the relation
λ2

23 = (
λ2

12 + λ2
13

)/
2, with the additional restriction λ12 �= λ13,

which results in two possible topologies: a circular network
(see figure 2) with all the couplings λmn being distinct and
nonzero, and a linear network with λ13 = 0. In both cases
the decoherence time of the superposition N (|α〉 + |−α〉)1 is
given by

τ
(N=3)
D = 1

2|α|2
3

γ + 2γ̃

 3

1

2|α|2γ , (17)

which is three times larger than the value assigned for an
isolated dissipative HO 1.

(iii) The case N = 4. We refrain from presenting here the long
expression derived for F (N=4)(t), whose minimization results
on the condition λ2

12 + λ2
13 = λ2

24 + λ2
34 with λ14 = λ23 = 0

(which is entirely equivalent to λ2
13 + λ2

14 = λ2
23 + λ2

24 with

3
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Figure 2. Sketch of a dissipative circular network.

λ12 = λ34 = 0 and λ2
12 + λ2

14 = λ2
23 + λ2

34 with λ13 = λ24 = 0).
As in the case N = 3, this condition results in two optimal
memory devices builded up from a circular or a linear network,
both given a decoherence time four times larger than that for
an isolated dissipative HO 1,

τ
(N=4)
D = 1

2|α|2
4

γ + 3γ̃

 4

1

2|α|2γ . (18)

From expressions (15)–(18), and an appropriate choice
of the coupling strengths λmn defining the circular and linear
topologies of a network with N HOs, we are encouraged to
propose the conjecture that the decoherence time for any N
can be expressed as

τ
(N)
D = 1

2|α|2
N

γ + (N − 1)γ̃
. (19)

This conjecture is corroborated by numerical calculation,
presented in figure 3, apart from an additional heuristic
argument discussed below. We also infer that the coupling
strengths λmn must satisfy the constraint

(N − 2)
(
λ2

12 + λ2
1N

) = 2
N−1∑
m=2

λ2
m,m+1, (20)

with all the other couplings set equal to zero. This constraint
and τ

(N)
D will be numerically verified below. Both circular and

linear topologies composing a memory device with N HOs are
described by the sum of matrices,

HD

(
cir
lin )

= i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 λ12 0 · · · H(
cir
lin )

1N

λ12 ω2 λ23 · · · 0

0 λ23 ω3
. . . 0

...
...

. . .
. . .

...

H(
cir
lin )

1N 0 0 · · · ωN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1

2

⎛⎜⎜⎜⎝
�11 �12 · · · �1N

�21 �22 · · · �2N

...
...

. . .
...

�N1 �N2 · · · �NN

⎞⎟⎟⎟⎠ , (21)
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Figure 3. Plot of the numerically computed exponential decay
exp[−2|α|2F(t)] for N = 10 and N = 20 (dashed and
dashed-dotted), for comparison and validation of the inferred
analytical result in equation (19). The solid and dotted curves give
the less and more pronounced decays coming from the analytical
results F(t) = 1 − e−γ̃ t (when γ � Nγ̃ ) and F(t) = 1 − e−γ t

(when the dissipative HO 1 is isolated), respectively.

whereHD
cir andHD

lin differ from each other only by the elements
Hcir

1N = λ1N and Hlin
1N = 0. In figure 2 we sketch the

circular network, noting that the linear one follows directly
by switching off the coupling λ1N .

We observe from expression (19) that, when γ � Nγ̃ ,
the decoherence time of the superposition N (|α〉 + |−α〉)1

prepared in the HO 1 becomes, remarkably, as large as the
number of HOs in the network, i.e., τ

(N)
D = N/(2|α|2γ ).

Even better, when γ � Nγ̃ , the decoherence time becomes
proportional to the much higher relaxation time γ̃ −1, i.e.,
τ

(N)
D = (2|α|2γ̃ )−1. We stress that, apart from both optimum

topologies which maximize the decoherence time, as given by
equation (19), all the other possible topologies (with whichever
the set of coupling parameters {λmn}) also works as a memory
device, increasing the decoherence time computed when an
isolated dissipative HO is considered.

Next, we confirm the validity of the inferred equation (19)
by plotting in figure 3 the numerically computed exponential
decay exp[−2|α|2F(t)], versus γ t , for whichever the circular
or linear topology of networks with N > 4 HOs. For α = 1,

γ̃ /γ = 10−3, and λ12/
√

2γ = λ23/γ = · · · = λN−1,N/γ =
103/

√
2, the dashed and dashed-dotted curves correspond

to N = 10 and 20, respectively. These numerical curves
are compared with those obtained analytically from the
decoherence time (19), by substituting F(t) = 1 − exp{−[γ +
(N −1)γ̃ ]t/N} into exp[−2|α|2F(t)]. The inferred analytical
results fit exactly the numerical calculations. We also plot
in figure 3, for comparison with the exponential decays for
N = 10 and 20, the solid and dotted curves given the less and
more pronounced decays coming from the analytical results
F(t) = 1 − e−γ̃ t (whenγ � Nγ̃ ) and F(t) = 1 − e−γ t (when
the dissipative HO 1 is isolated), respectively.

A consistent heuristic argument may be given to support
our conclusion that the optimal topologies are indeed the

4
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circular and the linear one for any number of oscillators. In
fact, the most general expression for the decoherence time
of the superposition state N (|α〉 + |−α〉)—following from
the relation τ−1

D = limt→0[2|α|2F(t)/t] estimated from the
exponential decay exp[−2|α|2F(t)] of the off-diagonal terms
of the density operator (13)—is given by

τD = f

2|α|2(gγ + hγ̃ )
= f̃

2|α|2(γ + h̃γ̃ )
, (22)

where f, g and h can be general dimensionless functions of
N, {λmn} and {ωn}, with f̃ = f/g and h̃ = h/g. In fact, the
above expression is the more general form since both decay
rates γ and γ̃ must appear in the denominator of the expression
considered up to order γ t (γ̃ t). We note that, to first order in
γ t , the time-dependent function F(t) = 1 − ∑

m|�m1(t)|2
in the exponential decay exp[−2|α|2F(t)] is of the form
(gγ + hγ̃ )t/f . Now, considering the particular case γ = γ̃ ,
it can be straightforwardly verified that the decoherence time
of the superposition N (|α〉 + |−α〉) is given by the standard
result (2|α|2γ )−1 of an isolated dissipative harmonic oscillator,
leading to the additional requirement f̃ = 1 + h̃. Analysing
this requirement in the light of our analytical expressions
τ

(N=3)
D and τ

(N=4)
D (apart from the inferred one τ

(N)
D ), we set

the optimal value f̃ = N with h̃ = N − 1. The above
reasonable construction gave us the confidence to conclude
that we have inferred the optimum topologies for a network
with any number N of coupled harmonic oscillators.

7. Retrieving the stored state

For the specific topologies derived above to work as a genuine
memory device, we must be able to retrieve and make available
back into the HO 1, the information content of the evolved
initial superposition N (|α〉 + |−α〉)1. To show that such an
information content recurs many times back into the HO 1,
before accumulating a significant reduction of its fidelity due
to decoherence, we derive the recurrence time τR from the
maximum of the recurrence probability (or fidelity)

PR(t) = Tr[ρ1(t)ρ1(0)]

= N 4
∑

r,s,r ′,s ′

〈
βs

1

∣∣βr
1

〉〈
ζ s

1 (t)
∣∣ζ r

1 (t)
〉 〈ζ s

1 (t)
∣∣βr ′

1

〉〈
βs ′

1

∣∣ζ r
1 (t)

〉
, (23)

where ρ1(t) = Tr2···NρS(t) [7]. Evidently, for the case of
ideal cavities (γ = γ̃ = 0), the maximum of the recurrence
probability equal unity. For the case N = 3 with ωm = ω, we
obtain

�τR = jπ, (24)

where the allowed values for the integers j, k and l, follow
when both equalities

j = k√
3

cot(θ/3) = l
2�

ω
cos(θ/3) (25)

are simultaneously satisfied, under the condition that j and
k must be both even or odd, with θ = arctan

√
(�/�)6 − 1.

For a linear network with N = 3, where � = λ13 = 0 and
consequently θ = π/2, the choice �/ω = 1/

√
3 also results

in the recurrence time given by equation (24), but �τR = jπ

(j = 1, 2, 3, . . .), which goes proportional to the timescale
�−1, defined by the coupling strength, which is evidently
expected to be significantly smaller than both the shortest
decoherence timescale γ −1 and, consequently, of longest γ̃ −1.
For the case where �/ω � 1 (expected to be applicable for
cavity quantum electrodynamics), it can be verified that τR

is obtained when only the first equality in equation (25) is
verified.

For N = 2, the recurrence time follows directly from
equation (25) by turning off the couplings λ13 and λ23. In this
case, where θ = π/2, the first equality in equation (25) reduces
to a single expression and, consequently, the recurrence time is
found when only a single equality is satisfied, making it shorter
than in the case N = 3. Conversely, for N = 4 the recurrence
time is found when the three equalities are simultaneously
satisfied, thus making τR longer than in the case N = 3. As
expected, the larger the network the longer the recurrence time.
However, it can be verified that the longer recurrence times
established for large networks are still considerably smaller
than the associated decoherence time. In fact, as verified in
[7], for the simplest case where all the couplings have the
same strength, the recurrence time for large values of N goes
as N�−1. When � � γ , such a timescale N�−1 is expected
to be easily surpassed by both decoherence timescales, γ −1

for the case of small N (γ � Nγ̃ ) and, even more easily,
γ̃ −1 for the case of large N (γ � Nγ̃ ). When considering
different coupling strengths, as envisaged for the construction
of our memory devices, the magnitude of τR does not differ
greatly from N�−1, as long as a circular or a linear topology is
considered. In this regard, we note from the general condition
(20) for maximizing the decoherence time (19), that special
sets {λmn} can be engineered, leading to the desired recurrence
times.

To illustrate the recurrence of a superposition, assumed
to be a ‘Schrödinger cat’-like state N (|α〉 + |−α〉), back into
the HO 1, we plot in figure 4 the probability of recurrence
PR(t) (solid line) and the inferred optimized coherence decay
exp{−2|α|2[1 − e−[γ +(N−1)γ̃ ]t/N ]} (thick solid line), versus γ t ,
assuming that all the storage HOs are initially in the vacuum
state. In figures 4(a)–(c) we contemplate the cases N = 3, 4
and 6, respectively, considering a degenerate circular network
with the ratios ω/γ = 105, λ/γ = 103, γ̃ /γ = 10−3 and
|α|2 = 10. We observe that, apart from recurring many
times back into the HO 1 within the decoherence time (under
the reasonable assumption that λ/γ � 1), the probability
of recurrence decays at a slower rate compared with the
coherence decay. Such a high amplitude for the probability of
recurrence, overcoming even the optimized coherence decay,
is an additional attractive feature of the present storing device.
The shaded regions between two consecutive recurrences
follow from the strong oscillations of the probability PR(t)

even under the modest ratio ω/γ = 105. We also observe
that the recurrence time increases with the number of the
storage HOs. However, as seen from figure 4(d), where we
have considered the same parameters as in figure 4(c), but
changing the ratio λ/γ from 103 to 2 × 103, the increase of
the coupling strength between the HOs leads to the decrease
of the recurrence time. We also note that the curves in figure 4
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Figure 4. Plot the probability of recurrence PR(t) (solid line) and the coherence decay exp{−2|α|2[1 − e−[γ +(N−1)γ̃ ]t/N ]} (thick solid line),
versus γ t , for the cases (a) N = 3, (b) N = 4 and (c) N = 6 setting ω/γ = 105, λ/γ = 103, γ̃ /γ = 10−3 and |α|2 = 10. In figure 4(d) we
set the same parameters as in figure 4(c), but changing λ/γ = 103 to 2 × 103.

follow from the regime where γ � Nγ̃ ; otherwise, for
γ � Nγ̃ , the pattern of the probability of recurrence remains
the same as that for γ � Nγ̃ , with the decay of the probability
of recurrence also exceeding the coherence decay given by
exp[−2|α|2(1 − e−γ̃ t )].

To demonstrate that the decay of decoherence occurs
at a higher rate than that of the probability of recurrence
for any N, in figure 5 we plot the difference between the
envelope function of the probability of recurrence E[PR(t)]
and the coherence decay, defined as D(t) = E[PR(t)] −
exp{−2|α|2[1 − e−[γ +(N−1)γ̃ ]t/N ]}, against the scaled γ t/N .
We consider the cases N = 2 (thick solid line), 3 (dotted),
4 (dashed line), 5 (dashed-dotted) and 6 (solid line), setting
again the ratios ω/γ = 105, λ/γ = 103, γ̃ /γ = 10−3 and
|α|2 = 10. We observe that the decay of function D(t)—after
reaching the maximum around the decoherence time indicated
by the vertical dotted line at γ t/N = 0.1—slows down with
the increase of either the even N = 2, 4 and 6 or the odd
N = 3, 5. The fact that the difference D(t) is practically the
same for any N until the decoherence time has elapsed, ensures
that our device is suitable for use as a quantum memory.

Next, we demonstrate analytically that the envelope
function of the probability of recurrence, E[PR(t)], is always

higher than the coherence decay. To this end, we note that the
probability of recurrence satisfies the relation

PR(t) = Tr[ρ1(t)ρ1(0)] � Tr[ρS(t)ρS(0)]

= N 4
∑

r,s,r ′,s ′

〈{
βs

m

}∣∣{βr
m

}〉〈{
ζ s
m(t)

}∣∣{ζ r
m(t)

}〉 〈{ζ s
m(t)

}∣∣{βr ′
m

}〉
× 〈{

βs ′
m

}∣∣{ζ r
m(t)

}〉
, (26)

stressing that the probability for the initial ‘Schrödinger
cat’-like state N (|α〉 + |−α〉) to recur to the HO 1
is, evidently, lower bounded by the probability for the
initial state of the whole network (the HO 1 included)
to recur. While the ratio

〈{
βs

m

}∣∣{βr
m

}〉/〈{
ζ s
m(t)

}∣∣{ζ r
m(t)

}〉
,

appearing in equation (12), gives the coherence decay
exp{−2|α|2[1 − e−[γ +(N−1)γ̃ ]t/N ]}, the product between this
ratio and the factor

〈{
ζ s
m(t)

}∣∣{βr ′
m

}〉〈{
βs ′

m

}∣∣{ζ r
m(t)

}〉
, as seen

from equation (26), gives the upper bound for the envelope
decay. When considering that a ‘Schrödinger cat’-like
state N (|α〉 + |−α〉) is prepared in the HO1 while all the
storage HOs are initially in the vacuum state, the ratio〈{

βs
m

}∣∣{βr
m

}〉/〈{
ζ s
m(t)

}∣∣{ζ r
m(t)

}〉
decays from 1 to exp(−2|α|2)

while the factor
〈{

ζ s
m(t)

}∣∣{βr ′
m

}〉〈{
βs ′

m

}∣∣{ζ r
m(t)

}〉
increases from

exp(−4|α|2) to exp(−|α|2). This simple analysis explains why
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Figure 5. Plot of the difference D(t) = E[PR(t)] − exp{−2|α|2[1 −
e−[γ +(N−1)γ̃ ]t/N ]} against the normalized γ t/N , for the cases N = 2
(thick solid line), 3 (dotted), 4 (dashed line), 5 (dashed-dotted) and
6 (solid line), considering the ratios ω/γ = 105, λ/γ = 103, γ̃ /γ =
10−3 and |α|2 = 10.

the difference D(t) is always a positive quantity as shown in
figure 5.

8. Concluding remarks

We have shown how to protect a superposition prepared in a
single HO with decay rate γ by coupling it to a circular or linear
chain of HOs all with the same decay rate γ̃ � γ . Whereas
the memory devices presented in the literature rely entirely
on the significantly large decay rate of the storage system,
where a stationary state is guarded from the environment,
the dynamical device presented here combines both the large
decay rate of the storage HOs and specific evolutions of the
state to be protected through the network. We have illustrated
the application of our memory device in the domain of cavity
QED because the manipulation of a cavity-field state must
be accomplished (through atom–field interactions) in an open
cavity exhibiting a large decay rate compared to a closed
one. These latter higher-Q cavities are then used to store
the superposition states which are retrieved in the open cavity
where they were prepared. Therefore, our scheme applies
whenever the preparation of the state to be protected demands
‘open’ systems with higher-decay rates than ‘closed’ storage
systems not suitable to state manipulation. As a memory
device must certainly play a major role in the development and
prospects of quantum information theory, we believe that the
reasoning presented in this paper can be useful in the domain of
quantum information theory. Although the application of the

present storing device for recent potential networks [19, 20]
seems not to be automatic, the reasoning here presented,
leading to equation (19), can guide further investigations on
decoherence control in a quantum network.
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